無功補償常用投切方式分類
無功補償常用投切方式分類
延時投切方式
延時投切方式即俗稱的"靜態"補償方式。延時投切的目的在於防止過於頻繁的動作使電容器造成損壞,更重要的是防備電容不停的投切導致供電係統振蕩,這是很危險的。
延時投切方式用於控製電容器投切的器件可以是投切電容器專用接觸器、複合開關或者同步開關(又名選相開關)。投切電容器專用接觸器有一組輔助接點串聯電阻後與主接點並聯。在投入過程中輔助接點先閉合,與輔助接點串聯的電阻使電容器預充電,然後主接點再閉合,於是就限製了電容器投入時的湧流。
複合開關就是將晶閘管與繼電器接點並聯使用,由晶閘管實現電壓過零投入與電流過零切除,由繼電器接點來通過連續電流,這樣就避免了晶閘管的導通損耗問題,也避免了電容器投入時的湧流。但是複合開關既使用晶閘管又使用繼電器,於是結構就變得比較複雜,成本也比較高,並且由於晶閘管對過流、過壓及對dv/dt的敏感性也比較容易損壞。在實際應用中,複合開關故障多半是由晶閘管損壞所引起的。
同步開關是近年來最新發展的技術,顧名思義,就是使機械開關的接點準確地在需要的時刻閉合或斷開。對於控製電容器的同步開關,就是要在接點兩端電壓為零的時刻閉合,從而實現電容器的無湧流投入,在電流為零的時刻斷開,從而實現開關接點的無電弧分斷。由於同步開關省略了晶閘管,因此不僅成本降低,而且可靠性提高。同步開關是傳統機械開關與現代電子技術完美結合的產物,使機械開關在具有獨特技術性能的同時,其高可靠性以及低損耗的特點得以充分顯示出來。
當電網的負荷呈感性時,如電動機、電焊機等負載,這時電網的電流滯帶後電壓一個角度,當負荷呈容性時,如過補償狀態,這時電網的電流超前於電壓的一個角度,功率因數超前或滯後是指電流與電壓的相位關係。通過補償裝置的控製器檢測供電係統的物理量,來決定電容器的投切,這個物理量可以是功率因數或無功電流或無功功率。下麵就功率因數型舉例說明。
當這個物理量滿足要求時,如cosΦ超前且>0.98,滯後且>0.95,在這個範圍內,此時控製器沒有控製信號發出,這時已投入的電容器組不退出,沒投入的電容器組也不投入。當檢測到cosΦ不滿足要求時,如cosΦ滯後且<0.95,那麼將一組電容器投入,並繼續監測cosΦ如還不滿足要求,控製器則延時一段時間(延時時間可整定),再投入一組電容器,直到全部投入為止。當檢測到超前信號如cosΦ<0.98,即呈容性載荷時,那麼控製器就逐一切除電容器組。要遵循的原則就是:先投入的那組電容器組在切除時就要先切除。
如果把延時時間整定為300s,而這套補償裝置有十路電容器組,那麼全部投入的時間就為50分鍾,切除也這樣。在這段時間內無功損失補隻能是逐步到位。如果將延時時間整定的很短,或沒有設定延時時間,就可能會出現這樣的情況。
當控製器監測到cosΦ〈0.95,迅速將電容器組逐一投入,而在投入期間,此時電網可能已是容性負載即過補償了,控製器則控製電容器組逐一切除,周而複始,形成震蕩,導致係統崩潰。是否能形成振蕩與負載的性質有密切關係,所以說這個參數需要根據現場情況整定,要在保證係統安全的情況下,再考慮補償效果。
無功補償的投切器件
(1)交流接觸器控製投入型補償裝置。由於電容器是電壓不能瞬變的器件,因此電容器投入時會形成很大的湧流,湧流最大時可能超過100倍電容器額定電流。湧流會對電網產生不利的幹擾,也會降低電容器的使用壽命。為了降低湧流,現在大部分補償裝置使用電容器投切專用接觸器,這種接觸器有1組串聯限流電阻與主觸頭並聯的輔助觸頭,在接觸器吸合的過程中,輔助觸頭首先接通,使電容器通過限流電阻接入電路進行預充電,然後主觸頭接通將電容器正常接入電路,通過這種方式可以將湧流限製在電容器額定電流的20倍以下。此類補償裝置價格低廉,可靠性較高,應用最為普遍。由於交流接觸器的觸頭壽命有限,不適合頻繁投切,因此這類補償裝置不適用頻繁變化的負荷情況。
(2)晶閘管控製投入型補償裝置。這類補償裝置就是SVC分類中的TSC子類。由於晶閘管很容易受湧流的衝擊而損壞,因此晶閘管必須過零觸發,就是當晶閘管兩端電壓為零的瞬間發出觸發信號。過零觸發技術可以實現無湧流投入電容器,另外由於晶閘管的觸發次數沒有限製,可以實現準動態補償(響應時間在毫級),因此適用於電容器的頻繁投切,非常適用於頻繁變化的負荷情況。晶閘管導通電壓降約為1V左右,損耗很大(以額定容量100Kvar的補償裝置為例,每相額定電流約為145A ,則晶閘管額定導通損耗為145×1×3=435W,必須使用大麵積的散熱片並使用通風扇。晶閘管對電壓變化率(dv/dt)非常敏感,遇到操作過電壓及雷擊等電壓突變的情況很容易誤導通而被湧流損壞,即使安裝避雷器也無濟於事,因為避雷器隻能限製電壓的峰值,並不能降低電壓變化率。此類補償裝置結構複雜,價格高,可靠性差,損耗大,除了負荷頻繁變化的場合,在其餘場合幾乎沒有使用價值。
(3)複合開關控製投入型補償裝置。複合開關技術就是將晶閘管與繼電器接點並聯使用,由晶閘管實現電壓過零投入與電流過零切除,由繼電器接點來通過連續電流,這樣就避免了晶閘管的導通損耗問題,也避免了電容器投入時的湧流。但是複合開關技術既使用晶閘管又使用繼電器,於是結構就變得相當複雜,並且由於晶閘管對dv/dt的敏感性也比較容易損壞。
瞬時投切方式
瞬時投切方式即人們熟稱的"動態"補償方式,應該說它是半導體電力器件與數字技術綜合的技術結晶,實際就是一套快速隨動係統,控製器一般能在半個周波至1個周波內完成采樣、計算,在2個周期到來時,控製器已經發出控製信號了。通過脈衝信號使晶閘管導通,投切電容器組大約20-30毫秒內就完成一個全部動作,這種控製方式是機械動作的接觸器類無法實現的。動態補償方式作為新一代的補償裝置有著廣泛的應用前景。現在很多開關行業廠都試圖生產、製造這類裝置且有的生產廠已經生產出很不錯的裝置。當然與國外同類產品相比從性能上、元器件的質量、產品結構上還有一定的差距。
動態補償的線路方式
(1)LC串接法原理如圖1所示這種方式采用電感與電容的串聯接法,調節電抗以達到補償無功損耗的目的。從原理上分析,這種方式響應速度快,閉環使用時,可做到無差調節,使無功損耗降為零。從元件的選擇上來說,根據補償量選擇1組電容器即可,不需要再分成多路。既然有這麼多的優點,應該是非常理想的補償裝置了。但由於要求選用的電感量值大,要在很大的動態範圍內調節,所以體積也相對較大,價格也要高一些,再加一些技術的原因,這項技術到目前來說還沒有被廣泛采用或使用者很少。
(2)采用電力半導體器件作為電容器組的投切開關,較常采用的接線方式如圖2。圖中BK為半導體器件,C1為電容器組。這種接線方式采用2組開關,另一相直接接電網省去一組開關,有很多優越性。作為補償裝置所采用的半導體器件一般都采用晶閘管,其優點是選材方便,電路成熟又很經濟。其不足之處是元件本身不能快速關斷,在意外情況下容易燒毀,所以保護措施要完善。當解決了保護問題,作為電容器組投切開關應該是較理想的器件。動態補償的補償效果還要看控製器是否有較高的性能及參數。很重要的一項就是要求控製器要有良好的動態響應時間,準確的投切功率,還要有較高的自識別能力,這樣才能達到最佳的補償效果。當控製器采集到需要補償的信號發出一個指令(投入一組或多組電容器的指令),此時由觸發脈衝去觸發晶閘管導通,相應的電容器組也就並入線路運行。需要強調的是晶閘管導通的條件必須滿足其所在相的電容器的端電壓為零,以避免湧流造成元件的損壞,半導體器件應該是無湧流投切。當控製指令撤消時,觸發脈衝隨即消失,晶閘管零電流自然關斷。關斷後的電容器電壓為線路電壓交流峰值,必須由放電電阻盡快放電,以備電容器再次投入。元器件可以選單相晶閘管反並聯或是雙向晶閘管,也可選適合容性負載的固態接觸器,這樣可以省去過零觸發的脈衝電路,從而簡化線路,元件的耐壓及電流要合理選擇,散熱器及冷卻方式也要考慮周全。
(3)混合投切方式實際上就是靜態與動態補償的混合,一部分電容器組使用接觸器投切,而另一部分電容器組使用電力半導體器件。這種方式在一定程度上可做到優勢互補,但就其控製技術,目前還見到完善的控製軟件,該方式用於通常的網絡如工礦、小區、域網改造,比起單一的投切方式拓寬了應用範圍,節能效果更好。補償裝置選擇非等容電容器組,這種方式補償效果更加細致,更為理想。還可采用分相補償方式,可以解決由於線路三相不平行造成的損失。
(4)無功發生器SVG 利用PWM整流控製技術,通過對電網的電壓和電流實時采樣和高性能DSP計算出電網的無功功率,實現無功功率的補償。SVG的特點是可實現對動態連續無功補償,並可實現感性無功和容性無功的補償,使電網的功率因數穩定在0.98以上。
P型半導體和N型半導體的形成 | |
半導體是由矽、鍺等物質組成的導電性介於導體和絕緣體之間的一類物質,向半導體中摻入雜質或改變光照、溫度等可改變其導電能力。... |
變壓器工作原理、原副邊電壓計算公式及變壓 | |
利用我們前麵兩節課程中學習到的自感應與互感應原理製造的設備:變壓器。... |
渦流效應:產生的原因及渦流效應的利弊與控 | |
渦流效應:產生的原因及渦流效應的利弊與控製... |
電氣開關櫃裏UA+OVP1是什麼意思 | |
電氣開關櫃裏的UA表示欠電壓脫扣器,而OVP1表示過電壓脫扣器。所以UA+OVP1是指包含了欠電壓脫扣器以及過電壓脫扣器的功能。 欠電壓脫扣器表示當電壓下降到額定值的一定比例時,比如70%-30%是,脫扣器就會動作,並帶動與其接在一起的斷路器快速跳閘,保護用電... |
高壓開關櫃上的速斷保護和過負荷保護什麼情 | |
速斷和過流都屬於電流保護,隻是保護的電流範圍不同。保護裝置通過櫃內安裝的CT獲取電流信號,當檢測到采集的電流信號達到保護設定值時,就會觸發保護功能跳閘。 速斷保護是用於接地或者短路等嚴重故障情況下啟動,當故障電流超過整定值時,保護裝置觸發跳閘... |